Explanation of the g-factors and Hyperfine Structure Constants of Co^{2^+} in Tetragonal $\mathrm{K}_2\mathrm{ZnF}_4$

Wen-Chen Zheng and Shao-Yi Wu

Department of Material Science, Sichuan University, Chengdu 610064, P.R. China International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, P.R. China Reprint requests to W.-C. Z.; e-mail: zhengwenchen@netease.com

Z. Naturforsch. **55a.** 539–544 (2000); received January 19, 2000

The formulas of the g-factors g_{\parallel} , g_{\perp} and the hyperfine structure constants A_{\parallel} , A_{\perp} for $3d^7$ ions in tetragonal octahedral crystals are established from a cluster approach. Differing from previous formulas, in these formulas the role of configuration interaction (CI)- and covalency (CO)-effects is considered, and the parameters related to both effects are obtained from the optical spectra and the structural parameters of the studied crystal. From these formulas, the EPR parameters g_i and A_i for K_2ZnF_4 : Co^{2+} are calculated. The results show good agreement with the observed values. The contributions to the EPR parameters g_i and A_i from the CI and CO effects, and the relationship between the sign of Δg (= $g_{\perp} - g_{\parallel}$) and the tetragonal distortion (elongated or compressed) of the ligand octahedron are discussed.